Name	

Date

Determine whether each of the following statements is always, sometimes, or never true.

A triangular prism has 3 lateral faces.

A pentagonal prism has 5 vertices.

An octagonal prism has 24 edges.

It is possible to calculate the surface area of any right cylinder given only the height and radius of a base.

The total surface area of a prism is equal to the 5. sum of the areas of its lateral faces and its two bases.

What is the surface area of a cube with edges of 7?

210 m

What is the total surface area of a right square prism with base edges of 5 cm and lateral edges of SA = LA + 2 B ; B = 25 8cm?

7.

$$SA = Ph + 2B$$

 $SA = 20(8) + 50$
 $SA = 210$

8.

A triangular right prism is shown. If AB = BC = 5, AC = 8, and CF = BE = AD = 10, what is the surface area of the prism?

~	7
0	cm

13. Each base of a right prism is a regular hexagon with an area of $24\sqrt{3}$ cm². If the lateral area of the prism is 120 cm², what is the height of the prism?

 $B = \frac{1}{2} ap$ $24\sqrt{3} = \frac{1}{2} (x\sqrt{3})(12x) \quad x^{2} = 4$ $24\sqrt{3} = 6x^{2}\sqrt{3} \quad x = 2$ $6x^{2} = 24 \quad LA = Ph$

56 TU2 14.

In the right cylinder shown, h = 12 and r = 2. |20 = 24h. What is the total surface area of this cylinder?

 $SA = 2\pi rh + 2\pi r^2$ $SA = 2\pi (2)(12) + 2\pi (2)^2$ $SA = 48\pi + 8\pi$ $SA = 56\pi$

20 T u2 15.

In the right cylinder shown, h = 3 and d = 5. What is the total surface area of the cylinder?

 $SA = 2\pi rn + 2\pi r^2$ $SA = 2\pi (2)(3) + 2\pi (2)^2$ $SA = 12\pi (+ 8\pi)$ $(A = 20\pi)$

90 H u2

A right cylindrical solid is shown with a smaller cylindrical hole bored through it. If D=8 cm, d=2 cm, and h=6 cm, what is the total surface area of the solid? $R=16\pi-\pi=15\pi$

Name:		
Period.	Date:	

Surface Area of Pyramids Worksheet

Find the lateral area and surface area of each regular pyramid.

3.
$$LA = 69\sqrt{103}$$
 $SA = 6\sqrt{103} + 6\sqrt{2}$
 $B = 1/20P = 1/2(\sqrt{2})(12)$
 $A = 6\sqrt{103}$
 $A = 6\sqrt{103}$
 $A = 6\sqrt{103}$

$$5. LA = 95473 u^{2}$$

$$SA = 63\sqrt{3} u^{2} 6\sqrt{3}$$

$$LA = 1/2(18)(6\sqrt{3})$$

$$LA = 5473 u^{2}$$

$$SA = LA + B$$

$$SA = 54\sqrt{3} + 9\sqrt{3}$$

SA=LA+B

= 103.5 + 39.1 = 142.6 u²

Name		
Period	Date	

Surface Area of Cones Worksheet

Find the lateral area and the surface area of each right cone.

and the same and t	A company of the contract of t
LA= 657 W2/	ISA = 90 TU
	131 1011 W

3.
$$LA = \frac{15\pi u^2}{8 - 9\pi SA} = \frac{24\pi u^2}{24\pi u^2}$$

$$LA = \pi r l = \pi(3)(5)$$

$$LA = 15\pi u^2$$

SA	+ = 1	LA+	B
f	SA =	= 24	141.2
294			uy

5.
$$LA = 135 \pi u^2$$

 $SA = 216 \pi u^2$
 $B = 81 \pi$

$$LA = \pi r e = \pi(q)(15)$$

 $TLA = 135 \pi u^2$
 $SA = LA + B = 216 \pi u^2$

4.
$$LA = \frac{12\pi u^2}{SA = 21\pi u^2}$$

 $B = 9\pi$
 $LA = \pi rl = \pi(3)(4)$
 $SA = LA + B = \frac{12\pi u^2}{17}$

6.
$$LA = \frac{600 \pi u^2}{SA = \frac{176 \pi u^2}{7}}$$
 $B = 576 \pi$
 $LA = \pi re$
 $LA = \pi (24)(25) = \frac{24}{6000 \pi u^2}$